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1 Abstract

Ground flares operate in a high-turndown, standby configuration for a significant portion of their
operating life, being fully utilized only under process upset scenarios or emergencies. The
low-momentum flow results in poor fuel-air mixing near the flare tip, leading to decreased
overall combustion efficiency (CE) and increased emissions of unburnt volatile organic
compounds (VOC). In such scenarios, assist medium flow rates that are too low, a state called
under-assist, results in excessive visible smoke and particulate pollution. On the other hand,
over-assisting degrades CE due to premature quenching of the reaction zones. Prevailing wind
conditions directly impact the CE of a flare by promoting mixing to varying degrees.
Fluctuating wind gusts also generate turbulence near the flare tip, occasionally inducing fuel
stripping from the reaction zones, or creating intermittent puffs of flame due to localized change
in the equivalence ratio. Therefore, achieving continuous smokeless flaring while maintaining
high overall combustion efficiency (CEoverall) requires active control of the fuel and assist
streams based on the local environmental conditions.

It is, however, difficult to measure the CEoverall of an open flare in crosswind and even more
challenging to quantify the uncertainty in that measurement. An approximation to this quantity
of interest (QOI) may be made with a remote sensing device such as a Passive Fourier
Transform Infrared Spectrometer (PFTIR). In the previous work1, we demonstrated the power
of the application of Bayes’ law using both simulation and experimental PFTIR data in
determining the uncertainty in the PFTIR measurements of the CE (CEPFT IR) for a range of net
heating values of the combustion zone (NHVcz). With this approach, we simultaneously
validated the test data collected at the John Zink Flare Facility using a John Zink steam-assisted
SKEC flare at high turndown2 with the simulation data of the same flaring configurations using
the multi-physics Uintah-Arches simulation tool. In this machine-learning stage of the digital
twin, we also computed CEoverall and its uncertainty in the absence of any measured data as a
Bayesian posterior predictive.

In the current decision-making stage, the Bayesian decision-theory-based digital twin
actively operates on the local wind information and quantifies the trade-offs among decisions on
steam-assist mass flow rate based on the utility and economics of the flare operation. The digital
twin evaluates all possible decisions from the joint posterior distribution of the uncertain system
parameters derived at the machine-learning stage1 to maximize the expected utility. It then
prescribes an operational set point for the steam-assist mass flow rate and predicts the CEoverall
with specified uncertainty at the optimized set point. This feedback circuit serves to monitor and
control the flare operation actively. The results demonstrate that the active control of the flare
based on the digital twin response allows the flare to be operated at significantly higher NHVcz
while improving the CEoverall over a range of operating conditions. Optimizing the steam-assist
mass flow rates based on the local wind conditions also yields predictions of CEoverall with a
lower uncertainty margin than when not correcting the assist stream mass flow rate for
crosswind effects.

1



2 Introduction

John Vickers, a principal technologist at NASA, first proposed the concept of ’digital twins’ for
engineering scenarios3 during the Apollo Space Program of NASA. Michael Graeves4 further
propagated the concept as a product life cycle management tool, ”a re-engineering of structural
life prediction and management.” The concept evolved over the years5,6, taking many different
forms based on the domain of application. It has been gaining popularity, especially in
data-driven design processes, manufacturing, automation, space exploration, hydrocarbon
exploration, etc. In engineering, digital twins are virtual copies of the asset that operate on the
same input parameter space and produce the same output streams and more. The digital twin is
critical to effective decision-making in industries and can be used in automated systems that
actively monitor a plant operation. A digital twin is, therefore, an adaptive and comprehensive
virtual replica of a physical system that can mirror the system across its entire operating
range/life cycle and evolve with it7.

Versions of the digital twin have been successfully applied to combustion systems (mainly
furnaces and boilers) in recent years8–10. These digital twins control the system based on
pre-defined rules, eliminating human involvement. The mapping of an operating condition to a
decision is however, not performed actively, rendering the digital twin unable to learn from and
adapt with the system. An advanced, data-driven, neural network-based set-point determination
for flares, demonstrated by Damodara et.al.11, actively learns from the data to adjust its response
characteristics. While this model continuously evaluates new data to update the decisions, it
fails to predict operational set-points outside the range of the specified test conditions owing to
the complex nature of the interaction of an open industrial flare and its surroundings due to
fluctuating wind conditions and to the inherent difficulty in quantifying CEoverall using remote
sensing techniques alone. Spinti et.al.12 applied Bayesian inference to quantify the uncertainties
in multiple parameters that define the performance characteristics of a biomass boiler power
plant. Propagating the uncertainties forward, they computed posterior predictives of multiple
QOIs, which will feed a decision-making model that determines the optimal set-point for the
operating variable of the boiler in the presence of uncertainty.

In contrast to other data-driven methods, a Bayesian digital twin contains full knowledge of
its historical performance in the form of priors (p(X), and has the ability to learn from the data
and to change in conformity with the real system by re-evaluating the inverse problem (p(X|Y))
when newer data is presented. The decision-making part solves the forward problem of Bayes’
Law (p(Y|X)) to predict CEoverall from the posterior distribution and employs a cost-utility
function to facilitate decision-making. The decision, a set-point for the steam-assist mass flow
rate, is obtained by maximizing the expected utility. As with the previous stage, the
decision-making stage uses data from multiple experiments on the John Zink steam-assisted
ground flare in crosswind2 along with LES results from a suite of multi-scale simulations
performed using the Uintah-Arches multi-physics simulation package.
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3 Bayesian Decision Theory

Bayesian-inference-based decision theory models are statistical models that provide guidelines
for making decisions in the presence of known uncertainties and that classify decisions by
quantifying the trade-offs among them using probabilities and cost evaluations. This type of
decision-theory model is best used in live engineering systems with active feedback. With the
feedback acting as the input, the model can update the controller set-points based on the new,
uncertain information and the knowledge of the historical behavior of the system. It is,
therefore, a simplistic way of performing artificial intelligence for the engineering problem at
hand13.

Every decision has a utility and cost associated with it. Normative decision theory models
are grounded on mathematical relationships between the decisions and the associated utility and
cost. With expected value theory, a subset of normative decision theory, every decision is
weighted according to its utility and cost by assigning probabilities to each decision.

A decision in a Bayesian context is a combination of values from the posterior distribution
of the uncertain parameters. Denoting the decision space (collection of all possible decisions) as
Xd and an individual decision as xd such that xd ∈ Xd , the probability of the outcome of a
decision can then be represented by p(yd|xd), and the collection of all possible outcome can be
denoted by Yd such that yd ∈ Yd .

Decision-making also involves assigning a subjective cost to each decision that reflects the
preference for obtaining that outcome. Decisions involving multiple parametric dimensions may
include multiple cost models with different weightage that sum to the overall cost. A utility
function, defined based on the outcome of the decision written as U (yd), quantifies the value of
a decision xd based on its cost and the risk involved in the decision. Expected value based
decision-making use of these explicit utility value assigned to different outcomes combined with
the probability of those outcomes to guide the choice between options.

According to the normative decision theory, the best decisions maximize the expected value
(E ()) of the utility function, which is the sum of the utility of every possible outcome, each
multiplied by the probability of its occurrence. Mathematically, it can be written as :

max
(

E (U (yd))

)
= max

( ∫
U (yd) p(yd|xd) dyd

)
(1)

For the SKEC flare, a decision is an optimised steam-assist mass flow rate for a specific wind
speed that promotes smokeless flaring with the highest achievable operational CEoverall .
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4 Decision Space and Decision-Making

A decision space for a digital twin may be defined as the parametric space within which all
decisions lie. The simplest decision spaces are bounded by the limits of the various uncertain
parameters of the system and the range of QOIs. An alternate approach to defining the decision
space is by solving the Bayesian inverse problem involving these uncertain parameters, yielding
a posterior distribution that better represents the collection of decisions that is consistent with all
of the measured data.

Fig. 1. Decision space of the SKEC flare digital twin. Every point in the contour, defined by a wind speed
and steam-assist mass flow rate, has a distribution of CEoverall . The image is a slice of the mode of these
distributions at all possible pairs. The filled contour is truncated below 96.5% of CEoverall to highlight
the targeted optimal performance region. Contour lines below 96.5% show the gradient in the CEoverall
prediction for the full parametric space.

For the SKEC steam-assisted flare, the decision space is three-dimensional with ambient
wind speed as an input and the steam-assist mass flow rate and CEoverall as the parameters of a
decision model. Figure 1 shows the slice at the mode of the predicted distribution of CEoverall
for every possible pair of wind speed and steam-assist mass flow rate. In the absence of reliable
methods to measure CEoverall in-situ, EPA regulations based on studies conducted on open
industrial flares14, prescribe the flare to be operated above NHVcz of 270 BTU/sc f to maintain
an operational CE of 98± 1.5% at all times. This targeted performance band is highlighted in
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Figure 1. Given the local wind condition (any point in the y-axis of Figure 1), the primary
consideration for any flaring operation is to achieve high CEoverall with a stable flame that
promotes smokeless flaring15,16.

For low wind speeds at low steam-assist mass flow rates, the turbulent mixing near the flare tip
improves air entrainment into the plume, which promotes complete combustion (high CEoverall).
Over-assist in such a scenario degrades the CEoverall , as seen by the steep gradients in the profile
(refer to Figure 1). The cooling effect from over-assist may also inhibit dispersion of flared gases.
At higher wind speeds, the steam-assist mass flow rate has a lesser impact on CEoverall . However,
depending on the local conditions, the flame may destabilize and enter a smoking phase due to
poor local mixing resulting in insufficient oxidizer in the reaction zone. This degrades CEoverall ,
increases the VOC emissions, and generates smoke. In extreme cases, over-steaming at high
wind speed can snuff out a flame and allow waste gases to escape unburned. There is hence
an optimal steam-assist mass flow rate for every wind condition that yields the best combustion
characteristics for the flare.

4.1 Decision Model

Multiple regulatory conditions are imposed on flare operations to limit the environmental impact
while ensuring the highest performance. In a decision-making context, such conditions are
called decision constraints, as they collectively define rules for comparing acceptable values for
the decision variables. By representing these conditions as mathematical relations, we assign
numerical values to the parameters of the decision space and the corresponding outcome. These
mathematical expressions are called cost models for the parameters. An ’integrated’ cost model
applicable across the entire decision space is assembled by combining the cost models.

The main considerations for the decision-making for SKEC flares are:

• EPA regulations prescribe flare operational CE to be within 98± 1.5% at all times except
for a period of five minutes over any two hour time window14,16.

• In the absence of methods to accurately measure CEoverall of the flare, maintaining the flare
NHVcz above 270 BTU/sc f is assumed to ensure a CEoverall of 98± 1.5%14,16. For the
SKEC tests, this translates into 0.022 kg/s of steam when the fuel flow rate is maintained
at 4 f t/s.

• Avoid excessive smoking. There is a higher probability for the flame to start smoking in
pockets within the high temperature reaction zone with a higher equivalence ratio.

Figure 1 highlights the region with the best performance for every wind condition. For steam
flow rates ≤ 0.022kg/s, there is a higher probability of achieving high CEoverall for low and high
wind speeds than for intermediate wind speeds. Bayesian decision theory is relevant in such
scenarios where the optimization of the steam-assist mass flow rate considering the uncertainty
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in the measurement of wind speed and CEoverall directly impacts the overall performance of the
flare.

The constraints on the operation of the flare are formalized into a decision model as individual
cost functions.

Fig. 2. Cost function for CEoverall . Fig. 3. Cost profile for steam-assist mass flow rate.

• Constraint on Combustion Efficiency (CEoverall): As per the EPA guidelines, the flares
are to be operated at CEoverall = 98±1.5%. This constraint can be expressed as a smooth
step function (refer to Figure 2):

CCE = 1− 1
1+ exp [10 · (yCE −96.5)]

(2)

The cost function assigns a higher value to decisions that yield CEoverall higher that 96.5%.

• Constraint on Net Heating Value of Combustion Zone (NHVcz): As per studies
conducted by EPA14, it is mandated that the flare NHVcz is maintained above 270
BTU/sc f to maintain the flare at CEoverall = 98±1.5% . Translating this into steam-assist
mass flow rate condition, the constraint (refer to Figure 3) can be expressed as:

Cṁsteam =
a

20 · (1
2 + exp [50 · (yCH4 −0.22)]

(3)

This cost function prefers the decisions where steam-assist mass flow rates are ≤
0.022 kg/s over the higher assist rates.

The composite cost function is written as:

C = w1 ·CCE +w2 ·Cṁsteam (4)

where w1 and w2 are the weights signifying the contribution of each individual cost function to
the overall decision model. Adjusting these weights adjusts the sensitivity of the decision to
each of the constraints.
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The constraints described above are mere examples inferred/derived from the sparse data
available for the SKEC flare. With better monitoring of other auxiliary parameters (fuel
composition, fuel flow rate, steam pressure and temperature, humidity, etc.) additional
constraining functions can be implemented within the decision model to better define the cost
relationship.

4.2 Utility of a Decision

More often than not, the cost of a decision is not directly proportional to the utility of the said
decision. An optimal decision is the one that considers all the risks involved to guide the
decision-making. We employ an iso-elastic utility function to represent the level of desirability
of each outcome in the presence of risk. The mathematical form is as below:

U(yd) =


y1−η

d −1
1−η

, if η ≥ 0,η ̸= 1

ln(yd), if η = 1

(5)

where η defines the degree of risk aversion. A low value of η (risk averse mode) yields a more
predictable but possibly lower payoff decision while a higher value of η (risk seeking mode)
yields a potentially higher payoff but possibly higher uncertainty.

4.3 Maximising the Expected Utility

The expected utility of a decision is the average utility value of all possible decisions weighted by
the probability of that decision. Mathematically, the expected utility of a decision (yd) is defined
as:

E (U (yd)) =
∫

U (yd) p(yd|xd) dyd (6)

where xd is a decision, yd is the cost of that decision, U(yd) is the utility of that decision, and
p(yd|xd) is the probability of that decision occurring. By using Bayesian statistics and probability
in combination with an optimizer, we make a decision that maximizes expected utility in the
presence of uncertainty.

5 Posterior Predictions Based on Decision Theory

Evaluating the expected utility based on the cost of all possible decisions for a specific wind speed
yields an optimised steam-assist mass flow rate (operational set-point) that satisfies all constraints
of the decision model in the best possible manner.
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Fig. 4. (Top) Prediction of CEoverall with optimized steam-assist mass flow rate (green) vs.
the predictions of CEoverall when steam-assist mass flow rate has the measurement uncertainty
(blue). EPA mandated limit is shown as a red line at 98% and the allowable variability is
represented by the orange line at 96.5%. (Bottom) Optimised steam-assist mass flow rate for
every wind condition vs. as-measured steam-assist mass flow rates with quantified uncertainty.

Overall Combustion Efficiency

The top half of Figure 4 shows the distribution of CEoverall predictions when the flare is
operated with the optimized steam-assist mass flow rate based on the local wind (green fill). In
comparison, the blue fill shows CEoverall predictions without optimisation that include the
uncertainty in the steam-assist mass flow rate measurements; these predictions have a larger
uncertainty than the optimized set-point for every wind condition. The bottom half of Figure 4
shows the optimized steam-assist mass flow rate and the steam-assist mass flow rate
measurements with uncertainty for all possible wind conditions. These results show that the
flare can be operated at steam flow rates below 0.022kg/s (corresponding NHVcz ≥ 270
BTU/sc f ) while maintaining a high operational CEoverall for almost all wind conditions. The
predictions for CEoverall closely match the expectation from the decision space mapping (Figure
1) for the optimized steam-assist mass flow rate, where there is a lower probability of finding
steam-assist mass flow rates that ensure meeting the standards on the flare efficiency, for
moderate wind speeds. While the optimization fails to determine a steam-assist mass flow rate
for moderate wind conditions that results in the operational CEoverall being above the prescribed
limits, the digital twin successfully predicts the steam-assist mass flow rate that yields the best
outcome from the decision model with quantified uncertainty.
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Degree of Risk Aversion

Fig. 5. Prediction of CEoverall when the decision is made in (top) a risk-averse context and (middle) a
risk-seeking context. The bottom plot shows the optimized steam-assist mass flow rate in both scenarios.

In Figure 5, we evaluate risk aversion in the decision-making process. This figure compares
the distribution of CEoverall given (top) risk-averse (η = 1.0) decision-making and (middle)
risk-seeking (η = 10.0) decision-making. The risk-averse utility function guides the
decision-making to target decisions with lower uncertainty even though CEoverall is low while
the risk-seeking utility function makes decisions that yield higher values for CEoverall while
accepting larger uncertainties in those outcomes.

For all wind speeds, a risk-averse strategy results in narrow distributions for the CEoverall
predictions that gradually widen with increasing wind speeds. With a risk-seeking strategy, the
distributions of the CEoverall predictions are wider at moderate and high wind speeds where the
optimizer accepts steam-assist mass flow rates higher than 0.022 kg/s and higher uncertainties in
the CEoverall to attain higher probability of maintaining a higher CEoverall .
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Dynamic Application of Digital Twin

Fig. 6. (Top) Dynamic digital twin predictions of CEoverall . at the optimized steam assist flow rate
compared against the CEoverall predictions based on the uncertainties in the scenario parameters (wind
speed and steam-assist mass flow rate). (Bottom) Optimised mass flow rate of steam compared against the
distribution of steam-assist mass flow rate when no optimization is applied.

While instantaneous CEoverall predictions of the flare performance are helpful in
understanding the combustion characteristics and operation of the flare, a comprehensive
assessment of the flare performance over a period of time is essential in quantifying the amount
of VOC emissions from the flare and in evaluating whether the flare meets other environmental
and regulatory constraints. Figure 6 shows the flare performance within a one hour time window
assuming that the flare operates with the optimized steam flow rate updated every minute of flare
operation. Matching the wind characteristics to the test data for the duration of this time
window, CEoverall predictions with the optimised steam assist set-point are consistently above
the regulatory constraint of 98% (green fill); the time-averaged value of CEoverall is 97.89%.
The optimized steam-assist mass flow rate is also low, ensuring that the flare operates above a
NHVcz of 270 BTU/sc f . Without the optimization for steam-assist mass flow rate, the CEoverall
predictions have large uncertainties that extend well below the target limits; the time-averaged
value of CEoverall is 90.69%. A higher average CEoverall implies significant reductions in total
VOC emissions over time and cleaner flaring.
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6 Conclusions

Open industrial flares under crosswind are subject to strict regulations on operating conditions to
achieve acceptable levels of CEoverall , emissions, and visible smoke. With several factors
affecting each of these performance metrics, combined with the uncertainty in measuring the
post-combustion plume to verify the operational characteristics of the flare, we have developed a
digital twin in order to model, learn from, and actively control the system.

In the machine-learning stage1 of the digital twin, we determined the uncertainty in the
measured quantities of a SKEC flare at high turndown, which helped define an operating
envelope for the flare, and predict with confidence, quantities that could not be measured
accurately. In the decision-making stage described in this paper, we defined a three-dimensional
decision space around the operating envelope that collects all possible decisions and their
outcomes. We then created cost functions to represent the flare operational constraints and
applied an iso-elastic utility function to the output of the cost (decision) model. By maximizing
the expected utility among decisions for any wind speed specification, we compute an optimized
steam-assist mass flow rate that best satisfies the decision constraints.

With this digital twin, we computed posterior predictive values of CEoverall at the optimized
steam-assist mass flow rate for different operating conditions (i.e., wind speeds). These values
show significant improvement in comparison with the predictions of CEoverall using the
non-optimized steam-assist mass flow rates and accounting for their uncertainty.

This paper demonstrates the capability of a Bayesian decision-theory-based digital twin in
predicting the performance of a flare operating at high turndown. With an on-site anemometer
actively reporting ambient wind conditions, the digital twin can be implemented in an automated
control system to monitor and control the flare and can generate operational summary reports for
a prescribed period of time that evaluate the long-term operational cost, total VOC emissions,
and other flare data both measured and unmeasured. This methodology could be applied to other
flares in other operating regimes following the principles outlined here.
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